Definition and Calculation of Individual Terms used in the Irrigation Water Demand Equation

Growing Season Boundaries
There are three sets of considerations used in calculating the start and end of the irrigation season for each crop:

- temperature-based growing season derivations, generally using Temperature Sum (Tsum) or Growing Degree Day (GDD) accumulations
- the growing season overrides table
- the irrigation season overrides table

These form an order of precedence with later considerations potentially overriding the dates established for the previous rules. For example, the temperature-based rules might yield a growing season start date of day 90 for a given crop in a mild year. To avoid unrealistic irrigation starts, the season overrides table might enforce a minimum start day of 100 for that crop; at that point, the season start would be set to day 100. At the same time, a Water Purveyor might not turn on the water supply until day 105; specifying that as the minimum start day in the irrigation season overrides table would prevent any irrigation water demands until day 105.

This section describes the rules used to establish growing season boundaries based on the internal calculations of the Model. The GDD and Tsum Day calculations are described in separate sections. The standard end of season specified for several crops is the earlier of the end date of Growing Degree Day with base temperature of 5 °C (GDD₅) or the first frost.

1. **Corn (silage corn)**
 - uses the corn_start date for the season start
 - season end: earlier of the killing frost or the day that the CHU2700 (2700 Corn Heat Units) threshold is reached

2. **Sweetcorn, Potato, Tomato, Pepper, Strawberry, Vegetable, Pea**
 - corn_start date for the season start
 - corn start plus 110 days for the season end

3. **Cereal**
 - GDD5 start for the season start
 - GDD5 start plus 130 days for the season end

 - season start: \((0.8447 \times \text{tsum600_day}) + 18.877\)
 - standard end of season

5. **Pumpkin**
 - corn_start date
 - standard end of season
6. **Apricot**
 - season start: \((0.9153 \times \text{tsum400_day}) + 5.5809\)
 - standard end of season

7. **CherryHD, CherryMD, CherryLD**
 - season start: \((0.7992 \times \text{tsum450_day}) + 24.878\)
 - standard end of season

8. **Grape, Kiwi**
 - season start: \((0.7992 \times \text{tsum450_day}) + 24.878\)
 - standard end of season

9. **Peach, Nectarine**
 - season start: \((0.8438 \times \text{tsum450_day}) + 19.68\)
 - standard end of season

10. **Plum**
 - season start: \((0.7982 \times \text{tsum500_day}) + 25.417\)
 - standard end of season

11. **Pear**
 - season start: \((0.8249 \times \text{tsum600_day}) + 17.14\)
 - standard end of season

12. **Golf, TurfFarm**
 - season start: later of the GDD5 start and the tsum300_day
 - standard end of season

13. **Domestic, Yard, TurfPark**
 - season start: later of the GDD5 start and the tsum400_day
 - standard end of season

14. **Greenhouse (interior greenhouses)**
 - fixed season of April 1 – October 30

15. **GH Tomato, GH Pepper, GH Cucumber**
 - fixed season of January 15 – November 30

16. **GH Flower**
 - fixed season of March 1 – October 30

17. **GH Nursery**
 - fixed season of April 1 – October 30

18. **Mushroom**
 - all year: January 1 – December 31
19. **Shrubs/Trees, Fstock, NurseryPOT**
 - season start: tsum500_day
 - end: julian day 275

20. **Floriculture**
 - season start: tsum500_day
 - end: julian day 225

21. **Cranberry**
 - season start: tsum500_day
 - end: julian day 275

22. **Grass, Forage, Alfalfa, Pasture**
 - season start: later of the GDD₅ and the tsum600_day
 - standard end of season

23. **Nursery**
 - season start: tsum400_day
 - standard end of season

Evapotranspiration (ET₀)
The ET₀ calculation follows the FAO Penman-Montith equation. Two modifications were made to the equation:

- Step 6 – Inverse Relative Distance Earth-Sun (dᵣ)
 Instead of a fixed 365 days as a divisor, the actual number of days for each year (365 or 366) was used.

- Step 19 – Evapotranspiration (ET₀)
 For consistency, a temperature conversion factor of 273.16 was used instead of the rounded 273 listed.

Availability Coefficient (AC)
The availability coefficient is a factor representing the percentage of the soil’s total water storage that the crop can readily extract. The factor is taken directly from the crop factors table (crop_factors) based on the cropId value.

Rooting Depth (RD)
The rooting depth represents the crop’s maximum rooting depth and thus the depth of soil over which the plant interacts with the soil in terms of moisture extraction. The value is read directly from the crop factors table.
Stress Factor (stressFactor)
Some crops, such as grasses, are often irrigated to a less degree than their full theoretical requirement for optimal growth. The stress factor (crop_groups_and_factors) reduces the calculated demand for these crops.

Available Water Storage Capacity (AWSC)
The available water storage capacity is a factor representing the amount of water that a particular soil texture can hold without the water dropping through and being lost to deep percolation. The factor is taken directly from the soil factors table (soil_factors).

Maximum Soil Water Deficit (MSWD)
The maximum soil water deficit is the product of the crop’s availability coefficient, rooting depth, and the available water storage capacity of the soil:

\[MSWD = RD \times AWSC \times AC \]

Deep Percolation Factor (soilPercFactor)
The soil percolation factor is used to calculate the amount of water lost to deep percolation under different management practices.

For greenhouse crops, the greenhouse leaching factor is used as the basic soil percolation factor. This is then multiplied by a greenhouse recirculation factor, if present, to reflect the percentage of water re-captured and re-used in greenhouse operations.

\[soilPercFactor = soilPercFactor \times (1 - \text{recirculationFactor}) \]

For Nursery Pot (Nursery POT) and Forestry Stock (Fstock) crops, the soil percolation factor is fixed at 35%. For other crops, the factor depends on the soil texture, the MSWD, the irrigation system, and the Irrigation Management Practices code. The percolation factors table (soil_percolation_factors) is read to find the first row with the correct management practices, soil texture and irrigation system, and a MSWD value that matches or exceeds the value calculated for the current land use polygon.

If the calculated MSWD value is greater than the index value for all rows in the percolation factors table, then the highest MSWD factor is used. If there is no match based on the passed parameters, then a default value of 0.25 is applied.

For example, a calculated MSWD value of 82.5 mm, a soil texture of sandy loam (SL) and an irrigation system of solid set overtree (Ssovertree) would retrieve the percolation factor associated with the MSWD index value of 75 mm in the current table (presently, there are rows for MSWD 50 mm and 75 mm for SL and Ssovertree).
Maximum Evaporation Factor (maxEvaporation)
Just as different soil textures can hold different amounts of water, they also have different depths that can be affected by evaporation. The factor is taken directly from the soil factors table.

Irrigation Efficiency (Ie)
Each irrigation system type has an associated efficiency factor (inefficient systems require the application of more water in order to satisfy the same crop water demand). The factor is read directly from the irrigation factors table (irrigation_factors).

Soil Water Factor (swFactor)
For the greenhouse “crop”, the soil water factor is set to 1. For other crops, it is interpolated from a table (soil_water_factors) based on the MSWD. For Nurseries, the highest soil water factor (lowest MSWD index) in the table is used; otherwise, the two rows whose MSWD values bound the calculated MSWD are located and a soil water factor interpolated according to where the passed MSDW value lies between those bounds.

For example, using the current table with rows giving soil water factors of 0.95 and 0.9 for MSWD index values of 75 mm and 100 mm respectively, a calculated MSWD value of 82.5 mm would return a soil water factor of:

$$
0.95 + \left[\frac{82.5 - 75}{100 - 75} \times (0.9 - 0.95) \right]
= 0.935
$$

If the calculated MSWD value is higher or lower than the index values for all of the rows in the table, then the factor associated with the highest or lowest MSWD index is used.

Early Season Evaporation Factor (earlyEvaporationFactor)
The effective precipitation (precipitation that adds to the stored soil moisture content) can be different in the cooler pre-season than in the growing season. The early season evaporation factor is used to determine what percentage of the precipitation is considered effective prior to the growing season.

Crop Coefficient (Kc)
The crop coefficient is calculated from a set of fourth degree polynomial equations representing the crop’s ground coverage throughout its growing season. The coefficients for each term are read from the crop factors table based on the crop type, with the variable equalling the number of days since the start of the crop’s growing season. For example, the crop coefficient for Grape on day 35 of the growing season would be calculated as:

$$
K_c = \left[0.0000000031 \times (35)^4 \right] + \left[-0.0000013775 \times (35)^3 \right] + \left[0.0001634536 \times (35)^2 \right] + \left[-0.0011179845 \times 35 \right] + 0.2399004137 \\
= 0.346593241
$$
Alfalfa crops have an additional consideration. More than one cutting of alfalfa can be harvested over the course of the growing season, and the terms used for the crop coefficient equation changes for the different cuttings. For alfalfa, the alfalfa cuttings table is first used to determine which cutting period the day belongs to (first, intermediate or last), and after that the associated record in the crop factors table is accessed to determine the terms.

There are two sets of polynomial coefficients used to calculate the crop coefficient; the first set is used for modelling time periods up to the year specified as the *crop curve changeover year*; and the second for modelling into the future. The changeover year will be modified as time goes on and new historical climate observations become available.

Growing Degree Days (GDD)
The Growing Degree Day calculations generate the start and end of GDD accumulation.

1. **Start of GDD Accumulation**
 For each base temperature (bases 5 and 10 are always calculated, other base temperature can be derived), the start of the accumulation is defined as occurring after 5 consecutive days of \(T_{\text{mean}} \) matching or exceeding the base temperature (BaseT). The search for the start day gets reset if a killing frost (<\(-2 \) oC) occurs, even after the accumulation has started. The search also restarts if there are 2 or more consecutive days of \(T_{\text{min}} \leq 0 \) oC. The GDD start is limited to Julian days 1 to 210; if the accumulation has not started by that point, then it is unlikely to produce a reasonable starting point for any crop.

2. **End of GDD accumulation**
The search for the end of the GDD accumulation begins 50 days after its start. The accumulation ends on the earlier of 5 consecutive days where \(T_{\text{mean}} \) fails to reach BaseT (strictly *less than*) or the first killing frost (\(-2 \) oC).

During the GDD accumulation period, the daily contribution is the difference between \(T_{\text{mean}} \) and BaseT, as long as \(T_{\text{mean}} \) is not less than BaseT:

\[
\text{GDD} = T_{\text{mean}} - \text{BaseT}; \ 0 \text{ if negative}
\]

Frost Indices
Three frost indices are tracked for each year:
- the last spring frost is the latest day in the first 180 days of the year with a \(T_{\text{min}} \leq 0 \) oC
- the first fall frost is the first day between days 240 and the end of the year where \(T_{\text{min}} \leq 0 \) oC
- the killing frost is the first day on or after the first fall frost where \(T_{\text{min}} \leq -2 \) oC

Corn Heat Units (CHU)
The Corn Heat Unit is the average of two terms using \(T_{\text{min}} \) and \(T_{\text{max}} \). Prior to averaging, each term is set to 0 individually if it is negative.
term1 = \[3.33 \times (T_{max} - 10)] - [0.084 \times (T_{max} - 10) \times (T_{max} - 10)]; 0 \text{ if negative}
\]

\[
\text{term2} = 1.8 \times (T_{min} - 4.44); 0 \text{ if negative}
\]

\[
\text{CHU} = \frac{(\text{term1} + \text{term2})}{2}
\]

Corn Season Start and End

The corn season boundary derivations are similar to the GDD determinations. The start day is established by 3 consecutive days where \(T_{mean} \geq 11.2 \) °C. As in the case of the GDD calculations, the search for the corn season start day gets reset if \(T_{min} \leq -2 \) °C, or if there are 2 or more consecutive days of \(-2 \) °C \(\leq T_{min} \leq 0 \) °C.

The search for the silage corn season end begins 50 days after the start. The season ends on the earlier of a mean temperature dropping below 10.1 or a killing frost.

The end of the sweet corn season is defined as 110 days after the season start.

Tsum Indices

The Tsum day for a given number is defined as the day that the sum of the positive daily \(T_{mean} \) reaches that number. For example, the Tsum400 day is the day where the sum of the positive \(T_{mean} \) starting on January 1 sum to 400 units or greater.

Days where \(T_{mean} \) falls below 0 °C are simply not counted; therefore, the Model does not restart the accumulation sequence.

Wet/Dry Climate Assessment

Starting with the Lower Mainland, some of the modelling calculations depend on an assessment of the general climatic environment as *wet* or *dry*. For example, when modelling the soil moisture content prior to the start of the crop’s growing season, the reservoir can only be drawn down by evaporation except for *grass* crops in *wet* climates which can pull additional moisture out of the soil.

The assessment of wet or dry uses the total precipitation between May 1 and September 30. If the total is more than 125 mm during that period, the climate is considered to be *wet* and otherwise *dry*.

Groundwater Use

The Model generates water sources for irrigation systems. This is done by first determining which farms are supplied by a water purveyor, and then coding those farms as such. Most water purveyors use surface water but where groundwater is used, the farms are coded as groundwater use. The second step is to check all water licences and assign the water licences to properties in the database. The remaining farms that are irrigating will therefore not have a water licence or be supplied by a water purveyor. The assumption is made that these farms are irrigated by groundwater sources.